The correct option is A −2√39
Given, f(x)=x3−3x2+2x
f′(x)=3x3−6x+2=0 for min. or max.
⇒x=6±√36−246=3±√33
⇒x1=3−√33=1−1√3,x2=3+√33=1+1√3
From graph of f(x) it is clear that for equation f(x)=k to have one negative
and one positive root k=f(x2)=x2(x2−1)(x2−2)=−(1√3).(1−13)
∴k=−2√39