dydx=yx+[1−(yx)2]1/2
Putting y = vx, we obtain
v+xdvdx=v+(1−v2)1/2
∫1(1−v2)1/2dv=∫1xdxsin−1v=logx+C
Putting y(1)=0, we have v(1)=y(1)/1=0, and C=sin−10−log1=0. Hence
v=yx=sin(logx)⇒y=xsin(logx)
So y≤x. Also f(e)=esin1≥e/2
Morever, y(eπ/2)=ex/2 so y(eπ/2)/e/pi/2=1ϵ[−1,1] and (0, 2). The range of y/x is clearly [-1, 1].