g(x)=f(sin(x))+f(cos(x))
g′(x)=f′(sin(x)).cos(x)−f′(cos(x)).sin(x)
Now
g′(x)>0 implies
f′(sin(x)).cos(x)−f′(cos(x)).sin(x)>0
f′(sin(x))f′(cos(x))>tan(x).
Now tan(x)>0 in (0,π2).
Therefore
f′(sin(x))f′(cos(x))>0 for (0,π2).
If
f′(sinx)>0 in (0,π2).
Then f′(cos(x))<0 in the above domain.
Hence
g(x)=h(x)+m(x)
Where
h(x)=f(sin(x)) and m(x)=f(cos(x)).
Considering that h(x) is increasing at the same rate as m(x) is decreasing in (0,π2), we get g′(x) more or less constant.