The correct option is B (−√23,0)∪(√23,∞)
g(x)=14f(2x2−1)+12f(1−x2)
g′(x)=14f′(2x2−1).4x−12f′(1−x2).2x=x(f′(2x2−1)−f′(1−x2))
for g(x) to be increasing function
g′(x)=x(f′(2x2−1)−f′(1−x2))>0
also f′(x)>0⇒f(x) is increasing function
so if x>0
(f′(2x2−1)−f′(1−x2))>0⇒(f′(2x2−1)>f′(1−x2))⇒2x2−1>1−x2
⇒x2>23⇒xϵ(√23,∞) (i)
and if x<0
f′(2x2−1)−f′(1−x2)<0⇒f′(2x2−1)<f′(1−x2)
⇒1−x2>2x2−1⇒3x2<2⇒x∈(−√23,0) (ii) since x<0 in this case.
So the final answer is Union of (i) and (ii) (−√23,0)U(√23,∞)