Substitue nx3=t⇒n3dx=dt
∴I=∫(n2+1)πn2π(4.3tn)(3ndt)[a2(1+cos2t)+b2(1−cos2t)]2=9n2∫(n2+1)πn2π4tdt4[a2cos2t+b2sin2t]2
=9n2∫(n2+1)nn2πtdt[a2cos2t+b2sin2t]2 ...(1)
Using ∫baf(x)dx=∫baf(a+b−x)dx
∴I=9n2∫(n2+1)πn2π(2n2+1)π−t[a2cos2t+b2sin2t]2 ...(2)
Adding (1) and (2)
∴2I=9n2(2n2+1)π.∫(n2+1)πn2πdt[a2cos2t+b2sin2t]2
∴I=9(2n2+1)πn2a2+b2a3b3