wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let I=(n+1n)3π3nπ4xdx[(a2+b2)+(a2b2)cos2nx3]2 (where a,b>0)
prove that I=9(2n2+1)πn2a2b2a3b3

Open in App
Solution

Substitue nx3=tn3dx=dt
I=(n2+1)πn2π(4.3tn)(3ndt)[a2(1+cos2t)+b2(1cos2t)]2=9n2(n2+1)πn2π4tdt4[a2cos2t+b2sin2t]2
=9n2(n2+1)nn2πtdt[a2cos2t+b2sin2t]2 ...(1)
Using baf(x)dx=baf(a+bx)dx
I=9n2(n2+1)πn2π(2n2+1)πt[a2cos2t+b2sin2t]2 ...(2)
Adding (1) and (2)
2I=9n2(2n2+1)π.(n2+1)πn2πdt[a2cos2t+b2sin2t]2
I=9(2n2+1)πn2a2+b2a3b3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon