I=∫exe4x+1dx
Substituting ex=t⇒exdx=dt, we get
I=∫1t4+1dt=∫⎛⎜⎝√2t−24(−t2+√2t−1)+√2t+24(t2+√2t+1)⎞⎟⎠dt=14∫√2t+2(t2+√2t+1)dt+14∫√2t−2(−t2+√2t−1)dt=14∫⎛⎜⎝√2t+2√2(t2+√2t+1)+1(t2+√2t+1)⎞⎟⎠dt+14∫⎛⎜⎝−√2t−2√2(−t2+√2t−1)−1(−t2+√2t−1)⎞⎟⎠dt=−log(−t2+√2t−1)2√2+log(t2+√2t+1)4√2−tan−1(1−√2t)2√2+tan−1(1+√2t)2√2+c=12√2(tan−1(e2x−1√2ex)−12ln(e2x−√2ex+1e2x+√2ex+1))+c
J=∫e−xe−4x+1dx
Substituting e−x=t⇒−e−xdx=dt, we get
J=−∫1t4+1dt=12√2(−tan−1(e−2x−1√2ex)+12ln(e−2x−√2e−x+1e−2x+√2e−x+1))+c=12√2(tan−1(e2x−1√2ex)−12ln(e2x−√2ex+1e2x+√2ex+1))+cJ+I=1√2(tan−1(e2x−1√2ex))+cJ−I=12√2ln(e2x−√2ex+1e2x+√2ex+1)+c