wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let I=exe4x+1dx and J=exe4x+1dx
Then for any arbitrary constant C, match the following

Open in App
Solution

I=exe4x+1dx
Substituting ex=texdx=dt, we get
I=1t4+1dt=2t24(t2+2t1)+2t+24(t2+2t+1)dt=142t+2(t2+2t+1)dt+142t2(t2+2t1)dt=142t+22(t2+2t+1)+1(t2+2t+1)dt+142t22(t2+2t1)1(t2+2t1)dt=log(t2+2t1)22+log(t2+2t+1)42tan1(12t)22+tan1(1+2t)22+c=122(tan1(e2x12ex)12ln(e2x2ex+1e2x+2ex+1))+c
J=exe4x+1dx
Substituting ex=texdx=dt, we get
J=1t4+1dt=122(tan1(e2x12ex)+12ln(e2x2ex+1e2x+2ex+1))+c=122(tan1(e2x12ex)12ln(e2x2ex+1e2x+2ex+1))+cJ+I=12(tan1(e2x12ex))+cJI=122ln(e2x2ex+1e2x+2ex+1)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon