Let ∫∞0[2e−x]dx, where [x] represents the greatest integer function be equal to lnk.Find k ?
Open in App
Solution
Since, 2e−x is decreasing for xϵ[0,∞). ∴0≤2e−x≤2,∀xϵ[0,∞) For x>ln2,[2e−x]=0 ⟹∫∞0[2e−x]dx=∫ln20[2e−x]dx+∫∞ln2[2e−x]dx =∫ln201dx+∫∞ln20dx=(x)ln20=ln2 ∴∫∞0[2e−x]dx=ln2