∫ex2⋅ex(2x2+x+1) dx=ex2f(x)+c
Let
I=∫ex2⋅ex(2x2+x+1) dx⇒I=∫ex2+x[x(2x+1)+1] dx
Assuming xex2+x=t
⇒[ex2+x+x(2x+1)ex2+x] dx=dt
Therefore,
I=xex2+x+c⇒f(x)=xex⇒f′(x)=ex(1+x)⇒f′′(x)=ex(1+x)+ex=ex(2+x)
For maxima/minima
f′(x)=0⇒x=−1f′′(−1)=e−1>0
Therefore, at x=−1 minima occurs, which is
f(−1)=−e−1=m⇒−1m=e∴[−1m]=[e]=2