Let ∫ex(x3+6x2+6x+α)dx=exf(x)+C, where f(0)=α and ∫ex(f(x)+β)dx=exg(x)+K for constants of integration C,K. If g(0)=α+β, then the number of solution(s) of the equation ex2(f(x)−g(x))=1 is
A
2 if β>0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1 if β=−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2 if β=−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2 if β<−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B1 if β=−1 I=∫ex(x3+6x2+6x+α)dx =∫ex⎛⎜
⎜
⎜⎝x3+3x2f(x)+(3x2+6x)f′(x)⎞⎟
⎟
⎟⎠dx+α∫exdx =ex(x3+3x2+α)+C ∴f(x)=x3+3x2+α
and ∫ex(f(x)+β)dx =∫ex(x3+3x2+α+β)dx =ex(x3+α+β)+K ∴g(x)=x3+α+β