Let 2[x+14]∫0{x2}dx={x}∫0[x+14]dx, where [⋅] and {⋅} denote the greatest integer and fractional part of x respectively. If [x]+14=λ{x},λ∈R, then the value of λ is
Open in App
Solution
Given: 2[x+14]∫0{x2}dx={x}∫0[x+14]dx
Since nT∫0f(x)dx=nT∫0f(x)dx, where T is the period of f(x),n∈N ∴[x+14]2∫0{x2}dx=14{x}∫0dx+{x}∫0[x]dx ⇒[x+14]2∫0x2dx=14{x}+0 ∴[x]+14=14{x}