The correct option is C 0
Using the given identity, adding (−π2) in the limits of I=π∫0sin2010xcos2009xdx
⇒I=π/2∫−π/2sin2010(x+π2)cos2009(x+π2)dx
We know that,
a∫−af(x) dx=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩2a∫0f(x) dx, if f(x) is even0, if f(x) is odd
f(x)=cos2010xsin2009xf(−x)=−cos2010xsin2009x=−f(x)
thus f(x) is odd
Hence, I=0