Let I=∫x√1+x−x2dx⋯(1)
Now,
x=λddx(1+x−x2)+μ⇒λ=−12, μ=12
So,
x=−12(1−2x)+12⋯(2)
From (1) and (2)
I=∫[−12(1−2x)+12]√1+x−x2 dx =∫−12(1−2x)(√1+x−x2)dx+∫12√1+x−x2dx
Now,
I1=∫−12(1−2x)(√1+x−x2) dx =−13(1+x−x2)3/2+CI2=∫12√1+x−x2dx =12∫
⎷(√52)2−(x−12)2dx =12⎡⎢
⎢
⎢
⎢⎣12(x−12)√(1+x−x2)+12(√52)2sin−1⎛⎜
⎜
⎜
⎜⎝x−12√52⎞⎟
⎟
⎟
⎟⎠⎤⎥
⎥
⎥
⎥⎦+C =14[(x−12)√(1+x−x2)+(54)sin−12x−1√5]+C⇒I=−13(1+x−x2)3/2+14[(x−12)√(1+x−x2)+(54)sin−12x−1√5]+C
Here,
α=−13,β=14,γ=54∴3(β−γα)=9