Expanding the above expression, we get
a2+ab(cos(x)−cos(y))−b2cosxcosy=a2−b2
a[cos(x)−cos(y)]=b[cos(x)cos(y)−1]
Differentiating with respect to x.
a[sin(y).y′−sin(x)]=−b[sin(x)cos(y)+cos(x)sin(y).y′]
y′[asin(y)+bcos(x)sin(y)]=asin(x)−bsin(x)cos(y)
y′=asin(x)−bsin(x)cos(y)asin(y)+bcos(x)sin(y)
=sin(x)a+bcos(x).a−bcos(y)sin(y)
Now (a−bcosy)=a2−b2a+bcosx
Substituting above,we get
sin(x)a+bcos(x).a−bcos(y)sin(y)
=sin(x)(a+bcos(x))2.a2−b2sin(y)
Hence
f(y)=a2−b2sin(y)
Now
f(π2)=a2−b2
=192.