Let loge(a+b2)=12(logea+logeb). If a=4, then the value of b would be
A
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A4 Given, loge(a+b2)=12(logea+logeb)=12loge(ab),[∵logx+logy=log(xy)] ⇒loge(a+b2)=(loge√ab)[∵xloga=logax] ⇒a+b2=√ab ⇒a+b−2√ab=0 ⇒(√a−√b)2=0 ⇒a=b Given a=4⇒b=4