The correct option is C {14}
f(x)=tan−1(x2+x+a)
For, f(x) to be onto, codomain should be exactly equal to range.
That is, range of funnction f(x)=[0,π2)
So, 0⩽tan−1(x2+x+a)<π2
Now, x2+x+a=(x+12)2+a−14
The above expression will take all real values from [0,∞), only if a=14
Hence, only for a=14, the function is onto.