Let f(x)=αxx+1 , x≠1. then for what value of α is f(f(x))=x
f(αxx+1)=α(αxx+1)αxx+1+1
=α2xαx+x+1
As, it is given that f(x)=x, so,
α2xαx+x+1=x
α2x=x(αx+x+1)
α2=αx+x+1
α2−αx−(x+1)=0
α2−αx−α+α−(x+1)=0
α[α−(x+1)]+1[α−(x+1)]=0
(α+1)[α−(x+1)]=0
α+1=0,α−(x+1)=0
α=−1,α=x+1
Therefore, the value of α is −1.