wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let ω=e2πi3 and a,b,c,x,y,z be non-zero complex numbers such that
a+b+c=x, a+bω+cω2=y and a+bω2+cω=z.
Then the value of |x|2+|y|2+|z|2|a|2+|b|2+|c|2 is:

A
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 3
ω=e2iπ3
ω is one of the cube roots of unity.
Other roots are ω2 and 1
1+ω+ω2=0 and ω3=1
|x|2=x¯¯¯x=(a+b+c)(¯¯¯a+¯¯b+¯¯c)=|a|2+|b|2+|c|2+a¯¯b+a¯¯c+b¯¯¯a+b¯¯c+c¯¯¯a+c¯¯b
|y|2=(a+bω+cω2)(¯¯¯a+¯¯bω2+¯¯cω)=|a|2+|b|2+|c|2+a¯¯bω2+a¯¯cω+¯¯¯abω+b¯¯cω2+¯¯¯acω2+¯¯bcω
|z|2=(a+bω2+cω)(¯¯¯a+¯¯bω+¯¯cω2)=|a|2+|b|2+|c|2+a¯¯bω+a¯¯cω2+¯¯¯abω2+b¯¯cω+¯¯¯acω+¯¯bcω2

|x|2+|y|2+|z|2=3(|a|2+|b|2+|c|2)+a¯¯b(1+ω2+ω)+a¯¯c(1+ω+ω2)+¯¯¯ab(1+ω+ω2)+b¯¯c(1+ω2+ω)

+c¯¯¯a(1+ω+ω2)+¯¯bc(1+ω+ω2)

=3(|a|2+|b|2+|c|2)

|x|2+|y|2+|z|2|a|2+|b|2+|c|2=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relation of Roots and Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon