Let ¯¯¯a=4^i+7^j+8^k,¯¯b=2^i+3^j+4^kand¯¯c=2^i+5^j+7^k are the position vectors of triangle ABC. The position vectors of the point where the bisector of angle A meets at BC, is
A
23(−6^i−8^j−6^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
23(6^i+8^j+6^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
13(6^i+13^j+18^k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
13(5^i+12^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C13(6^i+13^j+18^k) AB=6,AC=3 P divides BC in the ratio 6 : 3 ∴P.VofP=6(2^i+5^j+7^k)+3(2^i+3^j+4^k)6+3 18^i+39^j+54^k9=3(6^i+13^j+18^k)9 =13(6^i+13^j+18^k) Hence choice (C) is correct answer.