Given
|→a|=|→c|=|→c|=2
Angle between →a and →b is π3
→a⋅→b=|→a|∣∣→b∣∣cos(π3)
→a⋅→b=2×2×12
→a⋅→b=2
Angle between →b and →c is π3
→b⋅→c=∣∣→b∣∣|→c|cos(π3)
→b⋅→c=2×2×12
→b⋅→c=2
Angle between →a and →c is π3
→a⋅→c=|→a||→c|cos(π3)
→a⋅→c=2×2×12
→a⋅→c=2
[→a→b→c]2=∣∣
∣
∣∣→a⋅→a→a⋅→b→a⋅→c→b⋅→a→b⋅→b→b⋅→c→c⋅→a→c⋅→b→c⋅→c∣∣
∣
∣∣
[→a→b→c]2=∣∣
∣
∣
∣∣|→a|2→a⋅→b→a⋅→c→b⋅→a∣∣→b∣∣2→b⋅→c→c⋅→a→c⋅→b|→c|2∣∣
∣
∣
∣∣
[→a→b→c]2=∣∣
∣∣422242224∣∣
∣∣
[→a→b→c]2=4(16−4)−2(8−4)+2(4−8)
[→a→b→c]2=48−8−8
[→a→b→c]2=32
[→a→b→c]=√32
[→a→b→c]=4√2
(A) volume of parallelopiped
volume=[→a→b→c]
volume=4√2
Hence (r) is correct matching
(B) height of parallelopiped
volume=→a⋅(→b×→c)
4√2=(→a⋅^n)∣∣→b∣∣|→c|sin(π3)
4√2=height×2×2×√32
4√2=2√3height
2√23=height
Hence (p) is correct matching
(C) volume of tetrahedron
volume=[→a→b→c]6
volume=4√26
volume=2√23
Hence (q) is correct matching
(D)height of tetrahedron
volume=13(Areaofbase)(Height)
2√23=13(∣∣→b∣∣|→c|sin(π3)(Height)
2√23=height2√33
height=√2√3
Hence (s) is correct matching