wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let
p(θ)=∣ ∣ ∣2sinθcosθ1cosθsinθ1sinθcosθ∣ ∣ ∣ q(θ)=2∣ ∣sin2θ11cos2θ23cos2θ35∣ ∣ r(θ)=∣ ∣cosθsinθcosθsinθcosθsinθcosθsinθcosθ∣ ∣ and s(θ)=∣ ∣ ∣sec2θ11cos2θcos2θcsc2θ1cos2θcot2θ∣ ∣ ∣
Match the functions on the left with their range on the right

Open in App
Solution

A) p(θ)=∣ ∣ ∣2sinθcosθ1cosθsinθ1sinθcosθ∣ ∣ ∣
Expanding along C1
p(θ)=(2)(cos2θsin2θ)1(sinθcosθsinθcosθ)1(sin2θcos2θ)=2+sin2θ+cos2θ=2+2sin(2θ+π4)p(θ)[0,22]
B) q(θ)=2∣ ∣sin2θ11cos2θ23cos2θ35∣ ∣
Expanding along C1
q(θ)=2∣ ∣sin2θ11cos2θ23cos2θ35∣ ∣=2(sin2θ(109)cos2θ(53)+cos2θ(32))=2(sin2θcos2θ)=2sin(2θπ2)q(θ)[2,2]
C) r(θ)=∣ ∣cosθsinθcosθsinθcosθsinθcosθsinθcosθ∣ ∣
Applying C1C1+C3
r(θ)=∣ ∣2cosθsinθcosθ0cosθsinθ0sinθcosθ∣ ∣=2cosθ∣ ∣1sinθcosθ0cosθsinθ0sinθcosθ∣ ∣=2cosθ(1(cos2θ+sin2θ))=2cosθ
r(θ)[2,2]
D) s(θ)=∣ ∣ ∣sec2θ11cos2θcos2θcsc2θ1cos2θcot2θ∣ ∣ ∣=sec2θ∣ ∣ ∣1cos2θcos2θcos2θcos2θcsc2θ1cos2θcot2θ∣ ∣ ∣
Applying R3R3R1
s(θ)=sec2θ∣ ∣ ∣1cos2θcos2θcos2θcos2θcsc2θ00cot2θcos2θ∣ ∣ ∣=sec2θ(cot2θcos2θ)(cos2θcos4θ)=(cot2θcos2θ)sin2θ=cos4θs(θ)[0,1]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon