A) p(θ)=∣∣
∣
∣∣−√2sinθcosθ1cosθsinθ−1sinθ−cosθ∣∣
∣
∣∣
Expanding along C1
p(θ)=(−√2)(−cos2θ−sin2θ)−1(−sinθcosθ−sinθcosθ)−1(sin2θ−cos2θ)=√2+sin2θ+cos2θ=√2+√2sin(2θ+π4)⇒p(θ)∈[0,2√2]
B) q(θ)=√2∣∣
∣∣sin2θ11cos2θ23cos2θ35∣∣
∣∣
Expanding along C1
q(θ)=√2∣∣
∣∣sin2θ11cos2θ23cos2θ35∣∣
∣∣=√2(sin2θ(10−9)−cos2θ(5−3)+cos2θ(3−2))=√2(sin2θ−cos2θ)=2sin(2θ−π2)⇒q(θ)∈[−2,2]
C) r(θ)=∣∣
∣∣cosθsinθcosθ−sinθcosθsinθ−cosθ−sinθcosθ∣∣
∣∣
Applying C1→C1+C3
r(θ)=∣∣
∣∣2cosθsinθcosθ0cosθsinθ0−sinθcosθ∣∣
∣∣=2cosθ∣∣
∣∣1sinθcosθ0cosθsinθ0−sinθcosθ∣∣
∣∣=2cosθ(1(cos2θ+sin2θ))=2cosθ
⇒r(θ)∈[−2,2]
D) s(θ)=∣∣
∣
∣∣sec2θ11cos2θcos2θcsc2θ1cos2θcot2θ∣∣
∣
∣∣=sec2θ∣∣
∣
∣∣1cos2θcos2θcos2θcos2θcsc2θ1cos2θcot2θ∣∣
∣
∣∣
Applying R3→R3−R1
s(θ)=sec2θ∣∣
∣
∣∣1cos2θcos2θcos2θcos2θcsc2θ00cot2θ−cos2θ∣∣
∣
∣∣=sec2θ(cot2θ−cos2θ)(cos2θ−cos4θ)=(cot2θ−cos2θ)sin2θ=cos4θ⇒s(θ)∈[0,1]