{(b,b),(c,c),(b,a),(c,b),(a,c),(c,a)}
R={(a,a),(b,c),(a,b)}
For relexive add (b,b),(c,c).
∴R={(a,a),(b,c),(a,b)(b,b)(c,c)(c,b),(b,a)}(a,b)ϵR(b,c)ϵR so that (a,c) must belong to R.
Hence we must add (a,c) and for symmetric we must add (c,a) also.
∴R{(a,a),(b,c),(a,b)(b,b),(c,c),(c,b),(b,a)(a,c)(c,a)}
Ans: 6