Let S={x∈(−π,π):x≠0,±π2}. The sum of all distinct solutions of the equation √3secx+cosecx+2(tanx−cotx)=0 in the set S is equal to
A
−7π9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−2π9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
5π9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D0 √3secx+cosecx+2(tanx−cotx)=0⇒√3sinx+cosx+2(sin2x−cos2x)=0 √3sinx+cosx−2cos2x=0⇒sin(x+π3)=cos2x cos(π3−x)=cos2x⇒2x=2nπ±(π3−x) x=2nπ3+π9 or x=2nπ−π3 x=−100o,−600,200,1400 s0 −100o−60o+20o+140o=0