Let 4∑i=1ai=0 and 4∑j=1ajzj=0 and a1a2|z1−z2|2=a3a4|z3−z4|2.
Then show that z1,z2,z3,z4 are concyclic
Open in App
Solution
∵4∑i=1ai=0 ⇒a1+a2+a3+a4=0 ⇒(a1+a3)=−(a2+a4) ........ (1) and 4∑j=1ajzj=0 ∴a1z1+a2z2+a3z3+a4z4=0 ⇒(a1z1+a3z3)=−(a2z2+a4z4) ..... (2) Dividing (2) by (1) we get a1z1+a3z3a1+a3=a2z2+a4z4a2+a4 ...... (3) (3) Represents point O divides PR in the ratio a3:a1 and O divides QS in the ratio a2:a4 Let OR=a1k,OP=a3k,OQ=a4l,OS=a2l Now In ΔOPQ (PQ)2=(OP)2+(OQ)2−2(OP)(OQ)cosθ ⇒|z1−z2|2=a23k2+a24l2−2a3a4lkcosθ ∴a1a2|z1−z2|2=a1a2a23k2+a1a2a24l2−2a1a2a3a4lkcosθ Similarly, a3a4|z3−z4|2=a3a4a21k2+a3a4a22l2−2a1a2a3a4lkcosθ from given condition a1a2|z1−z2|2=a3a4|z3−z4|2 ∴a1a2a23k2a1a2a24l2=a3a4a21k2+a3a4a22l2 ⇒k2a3a1(a2a3−a1a4)=l2a2a4(a2a3−a1a4) ⇒(a1k)(a3k)=(a2l)(a4l) OP.OR=OQ.OS So P, Q, R and S are concyclic.