wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let 4i=1ai=0 and 4j=1ajzj=0 and a1a2|z1z2|2=a3a4|z3z4|2.
Then show that z1,z2,z3,z4 are concyclic

Open in App
Solution

4i=1ai=0
a1+a2+a3+a4=0
(a1+a3)=(a2+a4) ........ (1)
and 4j=1ajzj=0
a1z1+a2z2+a3z3+a4z4=0
(a1z1+a3z3)=(a2z2+a4z4) ..... (2)
Dividing (2) by (1) we get
a1z1+a3z3a1+a3=a2z2+a4z4a2+a4 ...... (3)
(3) Represents point O divides PR in the ratio a3:a1 and O divides QS in the ratio a2:a4
Let OR=a1k,OP=a3k,OQ=a4l,OS=a2l
Now In ΔOPQ
(PQ)2=(OP)2+(OQ)22(OP)(OQ)cosθ
|z1z2|2=a23k2+a24l22a3a4lkcosθ
a1a2|z1z2|2=a1a2a23k2+a1a2a24l22a1a2a3a4lkcosθ
Similarly, a3a4|z3z4|2=a3a4a21k2+a3a4a22l22a1a2a3a4lkcosθ
from given condition
a1a2|z1z2|2=a3a4|z3z4|2
a1a2a23k2a1a2a24l2=a3a4a21k2+a3a4a22l2
k2a3a1(a2a3a1a4)=l2a2a4(a2a3a1a4)
(a1k)(a3k)=(a2l)(a4l)
OP.OR=OQ.OS
So P, Q, R and S are concyclic.
243460_128643_ans_3cfe0c6f28fb464981505c57a763f07a.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sound Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon