Let →p,→q,→r be three mutually perpendicular vectors of the same magnitude If a vector →x satisfies the equation →p×((→x−→q)×→p)+→q×((→x−→r)×→q)+→r×((→x−→p)×→r)=0 is given by
A
12(→p+→q−2→r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
13(→p+→q+→r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12(→p+→q+→r)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
13(2→p+→q−→r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C12(→p+→q+→r) →p×((→x−→q)×→p)+→q×((→x−→r)×→q)+→r×((→x−→p)×→r)=0⇒(→p.→p)(→x−→q)−(→p.(→x−→q)→p)+(→q.→q)(→x−→r)−(→q.(→x−→r)→q)+→r.→r(→x−→p)−(→r(→x−→p)→r)=0⇒λ2Σ(→x−→q)−Σ(→p.→x→p)=0 Where →p.→p=→q→q=→r→r=λ2(Since→p.→q=→q→r=→r→p=0) ⇒λ2[3→x−(→p+→q+→r)]−Σ{(→p→x)→p}=0[∵Σ(→p→x)→p=→xλ2]⇒2→x=→p+→q+→r⇒→x=→p+→q+→r2