Let z1 and z2 be two distinct complex numbers and let z=(1−t)z1+tz2 for some real number t, where 0<t<1. If arg(w) denotes the principal argument of a nonzero complex number w then
A
|z−z1|+|z−z2|=|z1−z2|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
arg(z−z1)=arg(z−z2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∣∣∣z−z1¯z−¯z1z2−z1¯z2−¯z1∣∣∣=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
arg(z−z1)=arg(z2−z1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A|z−z1|+|z−z2|=|z1−z2| C∣∣∣z−z1¯z−¯z1z2−z1¯z2−¯z1∣∣∣=0 Darg(z−z1)=arg(z2−z1) Given z=(1−t)z1+tz2(1−t)+t Clearly, z divides z1 and z2 in the ratio t:(1−t).0<t<1 ⇒AP+BP=AB⇒|z−z1|+|z−z2|=|z1−z2| ⇒ option (A) is true and arg(z−z1)=arg(z2−z)=arg(z2−z1) ⇒ option (B) is false and (D) is true Also, arg(z−z1)=arg(z2−z1)⇒arg(z−z1z2−z1)=0 ∴z−z1z2−z1 is purely real ⇒z−z1z2−z1=¯¯¯z−¯¯¯¯¯z1¯¯¯¯¯z2−¯¯¯¯¯z1 or ∣∣∣z−z1¯¯¯z−¯¯¯¯¯z1z2−z1¯¯¯¯¯z2−¯¯¯¯¯z1∣∣∣=0 Therefore option (C) is correct.