Let z=−1+√3i2, where i=√−1 and r,s∈{1,2,3}. Let P=[(−z)rz2sz2szr] and I be the identity matrix of order 2. Then the total number of ordered pairs (r,s) for which P2=−I is
Open in App
Solution
z=ω (where ω is cube root of unity ) P=[(−ω)rω2sω2sωr] P2=[(−ω)rω2sω2sωr][(−ω)rω2sω2sωr]=[(−ω)2r+ω4s(−1)rω2s+r+ωr+2s(−1)rω2s+r+ωr+2sω2r+ω4s]=[−100−1] ⇒ω2r+ω4s=−1,
((−1)r+1)ω2s+r=0;r,s∈{1,2,3} ⇒ second equation represent r=1,3 Case - 1: r=1 ω4s=−1−ω2=ω⇒s=1 Case - 2: r=3 ω4s=−1−1=−2⇒ No value of s is possible ⇒ Total number of ordered pairs (r,s)=1