Let E1 and E2 be two independent events such that P(E1)=P1 and P(E2)=P2. Describe in words of the events whose probabilities are
(i) P1P2
(ii) (1−P1)P2
(iii) 1−(1−P1)(1−P2)
(iv) P1+P2−2P1P2
P(E1)=P1 and P(E2)=P2
(i) P1P2⇒P(E1).P(E2)=P(E1∩E2)
So, E1 and E2 occur.
(ii) (1−P1)P2=P(E1)′.P(E2)=P(E′1∩E2)
So, E1 does not occur but E2 occurs.
(iii) 1−(1−P1)(1−P2)=1−P(E1)′P(E2)′=1−P(E′1∩E′2)=1−[1−P(E1∪E2)]=P(E1∪E2)
So, either E1 or E2 or both E1 and E2 occurs.
(iv) P1+P2−2P1P2=P(E1)+P(E2)−2P(E1).P(E2)=P(E1)+P(E2)−2P(E1∩E2)=P(E1∪E2)−P(E1∩E2)
So, either E1 or E2 occurs but not both.