Let Ec denote the complement of an event LetE,F,G be pairwise independent events with P(G)>0 and P(E∩F∩G)=0 Then P(Ec∩Fc|G) equals
A
P(Ec)+P(Fc)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
P(Ec)−P(Fc)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
P(Ec)−P(F)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
P(E)−P(Fc)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CP(Ec)−P(F) P(¯¯¯¯E∩¯¯¯¯F/G)=P(¯¯¯¯E∩¯¯¯¯F∩G)P(G)=P(¯¯¯¯E)P(¯¯¯¯F)P(G)P(G)=P(¯¯¯¯E)P(¯¯¯¯F)=P(¯¯¯¯E){1−P(F)}=P(¯¯¯¯E)−P(¯¯¯¯E)P(F)=P(¯¯¯¯E)−{1−P(E)}P(F)=P(¯¯¯¯E)−P(F)+P(E)P(F) now given that E,F,GareindependentandP(E∩F∩G)=0⇒P(E)P(F)P(G)=0butP(G)≠0⇒P(E)P(F)=0henceP(¯¯¯¯E∩¯¯¯¯F/G)=P(¯¯¯¯E)−P(F)