Let f:(0,∞)→(0,∞) be a differentiable function such that f(1)=e and limt→xt2f2(x)−x2f2(t)t−x=0. If f(x)=1, then x is equal to
A
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1e
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
12e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1e limt→xt2f2(x)−x2f2(t)t−x=0
Usingf L'Hospital rule ⇒limt→x2t⋅f2(x)−x2(2f(t))⋅f′(t)1=0 ⇒2xf2(x)−2x2f(x)f′(x)=0 ⇒2xf(x)(f(x)−xf′(x))=0 ⇒f′(x)f(x)=1x(∵x≠0,f(x)≠0) ⇒lnf(x)=ln(x)+lnC ⇒f(x)=Cx
If x=1⇒C=e ∴f(x)=ex
If f(x)=1⇒x=1e