The correct option is D f′(e)=12
f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩1x, 0<x<1x1, 1≤x<2x2, 2≤x<3… …… …
Clearly, f(23)=32 and f(32)=32
So, f(x) is many-one function.
Also, range of f(x) is [1,∞), so
f(x) is onto.
f(1−)=1=f(1+)=f(1)
But f′(1−)=−1 and f′(1+)=1
So, f(x) is continuous but not differentiable at x=1.
f(2+)=1,f(2−)=2
∴limx→2f(x) does not exist.
Also, jump of discontinuity =|2−1|=1
For x∈(2,3),
f(x)=x2 [∵e∈(2,3)]
⇒f′(e)=12