wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f:(0,)R be a differentiable function such that f(x)=2f(x)x for all x(0,) and f(1)1. Then

A
limx0+f(1x)=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
limx0+xf(1x)=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
|f(x)|2 for all x(0,2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
limx0+x2f(x)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C |f(x)|2 for all x(0,2)
f(x)+f(x)x=2
I.F=e1xdx=elogx=x
f(x)x=2xdx+c
f(x).x=x2+c
f(x)=x+cx
f(1)1
1+c11 c0
f(x)=1cx2
f(1x)=1cx2
(1) limx0+f(1x)=limx0+(1cx2)=1
(2) limx0+xf(1x)=limx0+x(1x+cx)
= limx0+(1+cx2)=1
(3) limx0+x2f(x)=limx0+x2(1cx2)
= limx0+(x2c)=c
(4) f(x)=x+cx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Nature of Roots
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon