The correct option is D f(2x) is an odd function of x on R
f(x)=x∫1/xe−(t+1t)dtt
⇒f′(x)=e−(x+1x)x+xx2×e−(x+1x)
⇒f′(x)=2e−(x+1x)x
⇒f′(x)>0,∀x∈(0,∞)
Now,
f(x)+f(1x)=x∫1/xe−(t+1t)dtt+1/x∫xe−(t+1t)dtt=x∫1/xe−(t+1t)dtt−x∫1/xe−(t+1t)dtt=0
Putting x=2x in
f(x)+f(1x)=0 We have,
f(2x)+f(12x)=0
⇒f(2x)=−f(2−x)→ odd function