Let f:(0,∞)→R be a differentiable function such that
f′(x)=2−f(x)x for all xϵ(0,∞) and f(1)≠1. Then
limx→0+f′(1x)=1
Here f′(x)=2−f(x)x
or dydx+yx=2
[i.e. linear differential equation in y]
Integrating factor, IF=e∫1xdx=eln x=x
∴ Required solution is y.(IF)=∫Q(IF)dx+C
⇒y(x)=∫2(x)dx+C⇒yx=x2+C
∴y=x+Cx [∵C≠0,asf(1)≠1]
a) limx→0+f′(1x)=limx→0+(1−Cx2)=1
∴ Option (a) is correct
b) limx→0+xf(1x)=limx→0+(1+Cx2)=1
∴ Option (b) is incorrect
c) limx→0+x2f′(x)=limx→0+(x2−C)=−C≠0
∴ Option (a) is incorrect
d) f(x)=x+cx,C≠0
For C > 0, limx→0+f(x)=∞
∴ Function is not bounded in (0,2)
∴ Option (d) is incorrect