Let y=f(x)∀xϵ[0,∞)
∴y=9x2+6x−5=(3x+1)2−6
Clearly when xϵ[0,∞) then y≥−5∴ Range of f=[−5,∞)≠ Codomain of f
Hence f is not onto and, therefore f(x) is not invertible.
Let us take the modified codomain of f as [−5,∞)
Let's now check whether f is one-one : Let x1,x2ϵ[0,∞) such that f(x1)=f(x2)
⇒(3x1+1)2−6=(3x2+1)2−6 ⇒3x1+1=3x2+1 ⇒x1=x2. So, f is one-one.
Since, with the modified codomain, we have range of f = new codomain of f. So, f is onto.
No for any yϵ[−5,∞),y=(3x+1)2−6
⇒y+6=(3x+1)2 ⇒x=√y+6−13
∴f−1:[−5,∞)→[0,∞),f−1(y)=√y+6−13
OR
Let A=Q×Q, where Q is the set of all rational numbers, and ∗ be a binary operation on A defined by (a,b)∗(c,d)=(ac,b+ad) for (a,b),(c,d)ϵA
Note that (1,2)∗(2,3)=(2,5) and (2,3)∗(1,2)=(2,7) which implies (2,5)≠(2,7)
That is (a,b)∗(c,d)≠(c,d)∗(a,b)∀(a,b),(c,d)ϵQ×Q. So, ∗ isn't commutative.
Let (a,b),(c,d),(e,f)ε(Q×Q).
Now [(a,b)∗(c,d)]∗(e,f)=(ac,b+ad)∗(e,f)=(ace,b+ad+acf)…(i)
Also, (a,b)∗[(c,d)∗(e,f)]=(a,b)∗(ce,d+cf)=(ace,b+ad+acf)…(ii)
By (i) and (ii), [(a,b)∗(c,d)]∗(e,f)=(a,b)∗[(c,d)∗(e,f)].
Hence ∗ is associative
Let (e,e') be the identity element of ∗ in a. Then (a,b)∗(e,e′)=(a,b)=(e,e′)∗(a,b)
ax=1⇒x=1a⇒(ax,b+ay)=(1,0)⇒b+ay=0⇒y=−ba⎤⎥
⎥⎦ ∴ Inverse of (a,b)=(1a.−ba)