f(x)=1−2x+exx∫0e−tf(t) dt ⋯(i)
⇒f′(x)=−2+exx∫0e−tf(t) dt+exe−xf(x)
⇒f′(x)=−2+f(x)−1+2x+f(x) [From (i)]
⇒f′(x)−2f(x)=2x−3
which is a linear differential equation.
IF=e−2x
∴f(x)⋅e−2x=∫(2x−3)e−2x dx
⇒f(x)⋅e−2x=(2x−3)e−2x−2−e−2x2+C
From (i),f(0)=1
⇒f(x)=1−x
⇒f(−5)=6