The correct option is A limx→0+f′(1x)=1
Here, f′(x)=2−f(x)x
or dydx+yx=2 [ i.e. linear differential equation in y]
Integrating Factor, IF=e∫1xdx=elogx=x
∴ Required solution is y.(IF)=∫Q(IF)dx+C
⇒y(x)=∫2(x)dx+C
⇒yx=x2+C
∴y=x+Cx [∵C≠0, as f(1)≠1]
(a) limx→0+f′(1x)=limx→0+(1−Cx2)=1
∴ Option (a) is correct.
(b) limx→0+xf(1x)=limx→0+(1+Cx2)=1
∴ Option (b) is correct.
(c) limx→0+x2f′(x)=limx→0+(x2−C)=−C≠0
∴ Option (c) is correct.
(d) f(x)=x+Cx,C≠0
For C>0,limx→0+f(x)=∞
∴ Function is not bounded in (0,2).
∴ Option (d) is incorrect.