Composition of Inverse Trigonometric Functions and Trigonometric Functions
Let f : 0, ...
Question
Let f:(0,π)→R be a twice differentiable function such that limt→xf(x)sint−f(t)sinxt−x=sin2x for all xϵ(0,π).
If f(π6)=−π12, then which of the following statement(s) is (are) TRUE?
A
f(π4)=π4√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(x)<x46−x2 for all xϵ(0,π)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
There exists αϵ(0,π) such that f′(α)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f"(π2)+f(π2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Af(x)<x46−x2 for all xϵ(0,π) C There exists αϵ(0,π) such that f′(α)=0 Df"(π2)+f(π2)=0 limt→xf(x)sint−f(t)sinxt−x=sin2x By using L'Hospital's Rule
limt→xf(x)cost−f′(t)sinx1=sin2x
⇒f(x)cosx−f′(x)sinx=sin2x
⇒−(f′(x)sinx−f(x)cosxsin2x)=1
⇒−d(f(x)sinx)=1
⇒f(x)sinx=x+c
Put x=π6 and f(π6)=−π12
∴c=0⇒f(x)=−xsinx
(A) f(π4)=−π41√2
(B) f(x)=−xsinx As sinx>x−x36,−xsinx<−x2+x46
∴f(x)<−x2+x46∀xϵ(0,π)
(C) f′(x)=−sinx−xcosx f′(x)=0⇒tanx=−x⇒ there exist αϵ(0,π) for which f′(α)=0