The correct options are
B f(x)<x46−x2 for all x∈(0,π)
C There exists α∈(0,π) such that f′(α)=0
D f′′(π2)+f(π2)=0
limt→xf(x)sint−f(t)sinxt−x=sin2x
By using L Hopital's rule on LHS, we get
limt→xf(x)cost−f′(t)sinx1=sin2x
⇒f(x)cosx−f′(x)sinxsin2x=1
⇒−ddx(f(x)sinx)=1
⇒f(x)sinx=−x+C
Given, f(π6)=−π12⇒C=0
∴f(x)=−xsinx
f(π4)=−π4√2
We know sinx>x−x36
⇒f(x)=−xsinx<x2−x46
f(x)=−xsinx is continuous on [0,π] and differentiable on (0,π).
Also, f(0)=f(π)=0
∴ By Rolle's theorem, there exists α∈(0,π) such that f′(α)=0
f′(x)=−sinx−xcosx
f′′(x)=−2cosx+xsinx
⇒f′′(π2)+f(π2)=0