Let f = {(1, 1), (2, 3), (0, -1), (-1, -3)} be a function from Z to Z defined by f(x) = ax + b for some integer a, b. Determine a, b.
Here f(x) = ax + b.
f={(1,1),(2,3),(0,−1),(−1,−3)}
⇒f(1)=1,f(2)=3,f(0)=−1,f(−1)=−3
Now f(1)=1⇒a×1+b=1⇒a+b=1 ....(i)
f(2)=3⇒a×2+b=3⇒2a+b=3 ....(ii)
Substracting (i) from (ii) we get
2a+b−(a+b)=3−1⇒a=2
Putting a = 2 in (i)
2+b=1⇒b=−1.