The correct option is C {x∈[−1,1]:x=22n+1,n∈Z}
Given :
f(x)={x2∣∣cosπx∣∣ for x≠0,0 for x=0.
Checking at x=0 and 22n+1
For x=0
RHD, f′(0+)=limh→0f(0+h)−f(0)h−0 =limh→0h2cosπh−0h−0=0
LHD, f′(0−)=limh→0f(0−h)−f(0)0−h =limh→0h2cosπh−0−h=0
So the function is differentiable at x=0,
Modulus will change its value at x=22n+1
Checking for n=0⇒x=2
RHD, f′(2+)=limh→0(2+h)2(cosπ2+h)−22cosπ2h−0 =limh→0(2+h)2(cosπ2+h)h=limh→04cosπ2+hh
Using L Hospital rule,
=limh→04πsinπ2+h(12+h)21=π
LHD, f′(2−)=limh→0(2−h)2(−cosπ2−h)+22cosπ20−h =limh→0(2−h)2(−cosπ2−h)−h=limh→04cosπ2−hh
Using L Hospital rule,
=limh→0−4πsinπ2−h(12−h)21=−π
So the function will be non differentiable at x=22n+1 and differentiable at all other points.