Step 1: Given
f={(1,1),(2,3),(0,−1),(−1,−3)}
Step 2: Assume function
Let f be a linear function, f(x)=ax+b
Step 3: Finding function
Given points satisfied the function f(x).
Put x=1 and y=1 in f(x), we get
⇒1=a+b⋯(i)
Put x=0 and y=−1 in f(x), we get
⇒−1=a⋅0+b⇒b=−1⋯(ii)
Put the value of b in equation (i), we get
a−1=1⇒a=2
So, a=2,b=−1 put in f(x).
Hence, function f(x) is equal to 2x−1.