Let f:(−1,1)→R be such that f(cos4θ)=22−sec2θ for θ∈(0,π4)∪(π4π2).Then the value (s) of f(13) is (are)
1−√32
1+√32
1−√23
1+√23
Given f(cos4θ)=22−sec2θ=2cos2θ2cos2θ−1 =1+cos2θcos2θ=1+1cos2θ Let cos4θ=13⇒2cos22θ−1=13⇒cos2θ=±√23 ∴f(cos4θ)=1±√32orf(13)=1±√32
Let θ∈(0,π2) and x=X cosθ+y sinθ,y=X sinθ−Y cosθ such that x2+2xy+y2=aX2+bY2 Where a and b are constants then