The correct option is A -13
f(x)=2x3−x4−10,
f′(x)=6x2−4x3,
f′′(x)=12x−12x2,
f′′′(x)=12−24x
For CriticalPoints;f′(x)=0
⇒6x2−4x3=0
⇒x=0,x=32 are stationary points
x=32/ϵ[−1,1] So we have only one point i.e.,x=0
∵f′′(0)=0 and f′′(0)≠0
So x=0 is a point of inflection
So Minimum value occur only at corner points
i.e.,f(−1)=−13&f(1)=−9
So Min. f(x)=−13.