wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f:[1,1][0,2] be a function defined by f(x)=mx+c where m>0. If f is onto and tan(tan117+cot18+cot118) equals f(a) for some a[1,1], then the value of [a]+9 is
([.] denotes the greatest integer function)

Open in App
Solution

Linear function f(x)=mx+c is an onto function.
f(1)=0cm=0
f(1)=2c+m=2
Solving the above equations, we get
m=1,c=1
f(x)=x+1

Now, tan(tan117+cot18+cot118)
=tan(tan117+tan118+tan1118)
=tan⎜ ⎜ ⎜tan1⎜ ⎜ ⎜17+18117×18⎟ ⎟ ⎟+tan1118⎟ ⎟ ⎟
=tan(tan1311+tan1118)
=tan⎜ ⎜ ⎜tan1⎜ ⎜ ⎜311+1181311×118⎟ ⎟ ⎟⎟ ⎟ ⎟
=tan(tan113)=13=f(a) (given)

13=a+1
a=23
[a]+9=1+9=8

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon