Let f:[−1,1]→[0,2] be a function defined by f(x)=mx+c where m>0. If f is onto and tan(tan−117+cot−18+cot−118) equals f(a) for some a∈[−1,1], then the value of [a]+9 is
([.] denotes the greatest integer function)
Open in App
Solution
Linear function f(x)=mx+c is an onto function. f(−1)=0⇒c−m=0 f(1)=2⇒c+m=2
Solving the above equations, we get m=1,c=1 ∴f(x)=x+1