wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f:(1,2)R satisfies the inequality
cos(2x4)332< f(x) <x2|4x8|x2 x(1,2). then find limx2f(x)

Open in App
Solution



Given, cos(2x4)332< f(x) <x2|4x8|x2
limx2cos(2x4)332 limx2f(x) limx2x2|4x8|x2 [ Using limit property]
or, limx2cos(2x4)332 limx2f(x) limx2(4x2) [Since, |4x8|=4|x2|=4(x2) when x<2. ]
or, 1332 limx2f(x) (4.22)
or, 16 limx2f(x) 16
limx2f(x)=16[ By Sandwich property].

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon