The correct option is B [1,∞)
Convert the given quadratic into perfect square form
Given: f:[2,∞) → R be the function
defined by f(x)=x2−4x+5
f(x)=x2−4x+5
⇒ f(x)=(x−2)2−4+5
⇒ f(x)=(x−2)2+1
Find the range
Now, (x−2)2 ≥ 0
(x−2)2+1 ≥ 1
⇒ f(x) ≥ 1
∴ Range of f=[1,∞)
Hence, Option (B) is correct