Given: F(x)=e−xx∫3(3t2+2t+4F′(t))dt
⇒exF(x)=x∫3(3t2+2t+4F′(t))dt
Differentiating w.r.t. x, we get
exF′(x)+exF(x)=3x2+2x+4F′(x)
⇒(ex−4)F′(x)+exF(x)=3x2+2x
⇒F′(x)+(exex−4)F(x)=3x2+2xex−4
I.F.=ex−4
Now, the general solution
F(x)(ex−4)=∫3x2+2xex−4(ex−4)dx
⇒F(x)(ex−4)=∫(3x2+2x)dx
⇒F(x)(ex−4)=x3+x2+C
Since F(3)=0, therefore C=−36
∴F(x)=x3+x2−36(ex−4)
Differentiating w.r.t. x, we get
F′(x)=(ex−4)(3x2+2x)−(x3+x2−36)ex(ex−4)2
⇒F′(x)=ex(−x3+2x2+2x+36)−4(3x2+2x)(ex−4)2
⇒F′(4)=e4(−43+2⋅42+2⋅4+36)−4(3⋅42+2⋅4)(e4−4)2
⇒F′(4)=12e4−224(e4−4)2
∴α=12,β=4
Hence, α+β=16