Let f:(a,b)→R be a differentiable function. Which of the following statements is/are true :
If both limx→af(x) and limx→ag(x) and exist finitely and limx→ag(x)=0, then limx→af(x)g(x)=limx→af(x)limx→ag(x)
limx→a[f(x)+g(x)]=limx→af(x)+limx→ag(x) is valid if limx→af(x) does not exists?
If limx→a[f(x)+g(x)]=10 and limx→af(x)=2, then find the value of limx→ag(x), provided that limx→af(x) and limx→ag(x) exists ___