Let f (a) =g (a)= k and their nth derivatives fn(a),gn(a)exist and are not equal for some n. Further iflimx→af(a)g(x)−f(a)−g(a)f(x)+g(a)g(x)−f(x)=4,then the value of k is:
4
limx→af(a)g(x)−f(a)−g(a)f(x)+g(a)g(x)−f(x)=4Applying L' Hospital rulelimx→af(a)g′(x)−g(a)−f′(x)g′(x)−f′(x)=4⇒limx→akg′(x)−kf′(x)g′(x)−f′(x)=4⇒limx→ak[g′(x)−f′(x)]g′(x)−f′(x)=4⇒k=4