Let f(a)=g(a)=k and their nth derivatives fn(a), gn(a) exist and are not equal for some n. Further if limx→af(a)g(x)−f(a)−g(a)f(x)+g(a)g(x)−f(x)=4, then the value of k is:
4
limx→af(a)g(x)−f(a)−g(a)f(x)+g(a)g(x)−f(x)=4Applying L' Hospital rulelimx→af(a).g′(x)−g(a).f′(x)g′(x)−f′(x)=4⇒limx→akg′(x)−kf′(x)g′(x)−f′(x)=4⇒limx→ak[g′(x)−f′(x)]g′(x)−f′(x)=4⇒k=4